
Space Py Quest 1.0

Isobel Romero-Shaw, Roshni Vincent and Andreas Freise
with support from Phillip Jones

March 9, 2020

Space Py Quest is a gravitational-wave detector game based on Space Time Quest [?], providing on open
source implementation of the same concept for educational purposes. The Space Py Quest source code is
hosted at https://github.com/gwoptics/SpacePyQuest. This document is also available as LIGO document
number T1800061.

1 Introduction 2
1.1 Space Time Quest and Space Py Quest . 3

2 Physics and Math Behind the Game 4
2.1 Noise Curves . 4
2.2 Detector Score Calculations . 9

3 Testing Space Py Quest 12
3.1 Testing Validity of Individual Noise Curves . 12
3.2 Comparison to Space Time Quest . 15
3.3 Optimal Parameters . 16
3.4 Effects of Mirror Material and Location Choices . 18
3.5 Frequency Band Sensitivity . 18
3.6 Conclusions of Testing . 22

4 Making Space Py Quest 23
4.1 Code Structure . 23

5 Discussions and Outlook 25
5.1 Ideas for the Future . 25
5.2 A Personal Note . 27

A Appendix 27
A.1 Functions, Constants and Parameters . 27
A.2 Making Space Pie . 29

1

https://github.com/gwoptics/SpacePyQuest

1 Introduction

The game Space Time Quest has been developed by gravitational-wave group in Birmingham for outreach and
public engament with science [?]. The game puts you in charge of designing your own gravitational wave detector.
You make choices and trade-off decisions to select the best technology for your detector while keeping an eye
on the budget. The game is available as a modern application (‘app’) on the app stores for iOS, Android, and
various PC system, and provides an online leaderboard, see https://www.laserlabs.org.

Space Py Quest aims to enhance the educational capacities of Space Time Quest by providing users with the
opportunity to examine and alter the source code of the game. The two games have similar underlying mechanics,
but the methods by which a user interacts with each encourage different learning outcomes. Both games compute
the internal noise of a gravitational-wave detector using identical equations. Space Py Quest introduces some
additional, arbitrary scaling factors that prevent the games giving identical results. Without these changes,
players could use Space Py Quest and numerical optimisation methods to obtain the top score in the online
leaderboards of Space Time Quest’s high scores.

Space Py Quest presents an open-source interface to the game logic through a Jupyter notebook [?] with an
auto-updating plot that adjusts according to the detector parameters set using widgets such as sliders [?]. It has
been written in Python because this high-level language is widely familiar and accessible, allowing other students
to read, understand and change the code. Python is already being taught in primary schools, making Space Py
Quest an ideal teaching tool for the future.

Both Space Quest games are based on the scientific modelling software used in the gravitational-wave community
for the design of new detectors. Figure 1 shows the sensitivity of the LIGO detectors calculated by GWINC, a
scientific software package developed in the gravitational-wave community. As a player, your task is to lower the
detector noise while studying a similar plot.

The games are fun to play but are meant to also be used in an educational context. After playing the game you
will

• know about the different systems that are part of a gravitational-wave detector,

• understand how the internal noise determines the sensitivity of the detector

• be able to run a simple Jupyter notebook running Python code

• have experience in performing inevitable trade-off decisions between different enhancements, to keep the
detector costs within a set budget.

This document fills the gap between both Space Quest games and actual sensitivity modelling software used in
the scientific gravitational-wave collaborations, by providing the documentation for the noise calculations used
in the games. Space Py Quest’s noise curves have the same scaling and overall shape of their real counterparts,
but the functions that it uses to obtain them are accessible to the user through the code, and are referenced and
explained within this text. Space Py Quest should be simple enough, so that it can be successfully understood and
played within a timeframe short enough to entertain, but not bore, its player. Thus, although the functions used
to generate noise curves are based on physically correct equations, they are simplified to avoid over-complicating
the game. An average user, for example, will benefit from learning that less excess gas leads to more detections,
and may be interested to know that this is to do with the gas particles interrupting the laser beam; they are less
likely to want to know exactly how the velocity of each particle affects the residual gas noise curve.

This document is structured as follows: Section 2 provides the equations used by the game to calculate the noise
curves and the resulting range of the detector. Section 4 describes the game design and code. Section 3 details the
testing of Space Py Quest, achieved by ensuring that the noise curves and parameters behave as dictated by the
noise equations and realistic expectations. Ideas for future development of the game are given in the discussion
in section 5.1. Any utility functions used by the code and all constants referenced in equations presented in this
document are provided in the appendix.

2

https://www.laserlabs.org

100 101 102 103 104

Frequency [Hz]

10 25

10 24

10 23

10 22

10 21

St
ra

in
 [1

/
Hz

]
Quantum
Seismic
Gravity Gradient
Suspension Thermal
Coating Brownian

Coating Thermo-Optic
Substrate Brownian
Substrate Thermo-Elastic
Excess Gas
Total

Figure 1: The central piece of the Space Quest games is a plot that shows the noise
budget and sensitivity of the instrument. This plot is the equivalent plot produced
by the scientific software GWINC used in the LIGO collaboration. Each coloured
trace shows a different detector noise and the black traces, which is the quadratic
sum of the all other traces, presents the sensitivity of the detector. The y-axis is a
’strain’ spectral density, with ’strain’ being the amplitude of gravitational waves, and
the x-axis is the frequency of the gravitational wave signal. When the black curve
is lower then the detector can detect gravitational waves with a smaller amplitude.
The aim of the quest games is to achieve lower numerical values for this black trace,
thus improving the sensitivity of the detector.

1.1 Space Time Quest and Space Py Quest

Space Time Quest is designed to be played by a wide range of mostly non-experts, who are interested in gravi-
tational waves and are motivated to keep playing to get the best score, beating their friends or winning a high
place on the leaderboard. Space Py Quest can also be played by non-experts, but is more apt for those who wish
to interact with the driving code or understand the noise curves. Some differences between the two games are
listed and discussed below.

1. Format
Space Time Quest is an app with eye-catching graphics and clear transitions between stages of the game.
Space Py Quest exists within a Jupyter notebook, which is not as graphically interesting. It requires some
interaction with code, with a user handling a set of parameters in order to initialise the detector as either
aLIGO or LIGO Voyager. This introduces Python’s dictionary type to the player, and demonstrates how
Space Py Quest can provide programming education in addition to the lessons taught by Space Time Quest.
It is not yet as visually appealing, but this could also be something for a user to alter themselves. The
motivation then slightly deviates from that of Space Time Quest - Build Your Own Detector Sensitivity
Modelling Software rather than Build Your Own Detector.

2. Narrative
In Space Time Quest, the game follows the user as they set up their detector in a certain site, lower the
sensitivity curve as far as possible within the budget, and run the detector to find their score. As such,

3

there is a clear beginning, middle and end to each attempt. Space Py Quest was designed for a more flexible
interaction. The user may change the site of the detector at any point, and may run the detector to find
its range as many times as they like without having to restart the game. Again, this is more in line with
a Make Your Own Detector Sensitivity Modelling Software aim - whilst detectors themselves might not be
easy to change once built, detector designs are flexible and cost-effective ways of trialing new ideas.

3. Removable Noise Curves
Users of Space Py Quest are able to choose which noise curves are displayed using tick-box widgets, allowing
the effects of different parameters on individual noise sources to be investigated.

4. Integration Methods
Space Time Quest was originally written in Java and later implemented in C#, as required by the respective
game engines. Space Py Quest is written in Python and makes use of the SciPy library functions for
fast numerical computations, for example Simpson’s integration function. The use a different integration
methods and numerical round-off errors lead to slight differences in the scores between Space Time and
Space Py Quest.

2 Physics and Math Behind the Game

2.1 Noise Curves

Noise curves displayed by Space Py Quest are scattered throughout this document. Figure 2 is an example of
the plots generated by the game, with additional dashed traces highlighting the basic slopes and shapes of each
individual noise.

Gravitational waves stretch and squash the long arms of the detector, which can be expressed as a fractional
length change, or strain. Strain equivalent noise arises when other effects that are not gravitational waves cause
the detector signal to change. In Space Py Quest, strain equivalent noise is illustrated as an amplitude spectral
density in the frequency domain, allowing the user to view a time-averaged snapshot of the strain that the noise
sources emulate.

As displayed in figure 2, the total sensitivity curve is the vector sum of the individual noise contributions. This
is the limit of the detector’s sensitivity, and a lower total noise means a better sensitivity.

The following sections give a technical description of the simplified individual noise curves.

Ground Motion Noise

• Seismic
The base seismic noise is

X0 =
Xdc

1 +
(

f
fc

)n0
+Xhf , (1)

whereXdc, Xhf , n0 and fc are location-specific parameters that are detailed in appendix A.1. X0 experiences
a reduction if the detector is located a distance d underground, so that

R =
1√

1 +
(

d
50

)4 + 0.8× 10−3. (2)

These two terms combine to give the final displacement due to seismic activity,

Xseis = X0 ×R. (3)

The seismic noise is calculated considering a highly-damped pendulum with 1 < Qpend < 10, where Qpend

is the pendulum quality factor. Here, we assume a quality factor of Qpend = 5. The ground motion, Xseis,
is calculated as in equation 3. The pendulum oscillation frequency, fp is given as

fp =
1

2π

√
g

l
, (4)

4

Xseis/f2

Xseis(1+(f/fp)4)-2

f-1/2

(f4+f6/fFP)-1/2

(1+(f/fFP)2)1/2

constant

f-5/2

Figure 2: The default aLIGO noise curve model generated by Space Py Quest. The
solid traces represent the graphical output of Space Py Quest, the dashed traces have
been added here to indicate the basic slope or shape of the respective noise curves
described in this section. The detector used in this example is initialised at a depth,
d, of 0 m, in the desert site, with fused silica mirrors. The mirrors have a roughness,
R, of 1 nm, and a mass, M , of 40 kg. There are 4 suspension stages, Ns, and the
suspension has a length, l, of 60 cm. 6 vacuum pumps, Np, are used and the detector
temperature, T , is 295 K. The laser power, P , is set to 125 W. Unless specified
otherwise, plots in this section will refer to a detector with this configuration.

where g is the gravitational acceleration and l is the suspension length. We consider only f > fp, since for
the shortest pendulum we get an fp of ∼ 1 Hz. The transfer function between ground motion and the test
mass movement is then calculated as

Tpend =
1

1 +
(

f
fp

)4

−
(

2− 1
Qpend

)(
f
fp

)2 . (5)

The seismic noise is then

hS =
2

L
Xseis

(√
Tpend

)Ns

. (6)

• Gravity Gradient (Newtonian)
The Newtonian, or gravity gradient, strain noise arises from modulation to the local gravitational field
due to density perturbations of the Earth [?]. This calculation assumes the form of the expressions for
gravity gradient noise given in equations (5) and (6) of the 2004 Virgo Sensitivity Curve document [?]. The
Newtonian noise in the 2016 version of Space Time Quest is based on equation (6),

hGG =
Xseis(1.3× 10−8)

Lf2
, (7)

where

(1.3× 10−8) ≈ 2.7GρE
√

2

(2π)2
. (8)

G is Newton’s constant and ρE is the density of the Earth, ∼ 2× 103 kgm−3. Equation (5) from the Virgo
sensitivity document returns a strain amplitude about 7 times larger than equation 7 here, the calculation
used in Space Py Quest.

5

Figure 3: Approximate ground noise models for the aLIGO detector described in
figure 2. Seismic oscillations affect the detector over the entire frequency spectrum,
but at mid-frequencies and above its contribution is extremely small in comparison
to strain noise from other sources.

Figure 4: The thermal noise models used by Space-Py Quest, which contribute sig-
nificantly at the lower end of the frequency range.

Thermal Noise

• Mirror Thermal
The correct power spectral density of the mirror’s internal vibrations, as provided in [?], is

X2
int =

4kbT

ω2
×Re

(
1

Imp(ω)

)
. (9)

Here, kb is the Boltzmann constant, Imp(ω) is the system’s mechanical impedence, and ω = 2πf . In order
to calculate this for Space Py Quest, we approximate only equation (28) from [?], which is used to calculate
the fluctuations due to the first mode resonance. The expression

w1 = ×AMT ×
(

23

M

) 2
3

, (10)

has been chosen to represent the first resonant frequency of the mirror, so that it scales inversely with
mirror mass. This is because the Space Py Quest mirrors are assumed to maintain their density and aspect
ratios, so higher mass means larger reflective surface area. AMT is a scaling factor, here set to 20505, and

6

M is the mirror mass. This gives ω1 about 4 times larger than those given in [?] for masses of ∼ 20 kg,
but only about twice as large for masses of ∼ 50 kg.

We use the ‘effective’ mirror mass associated with the w1 mode, Meff ,

Meff = 0.28×M. (11)

This reduction follows the effective masses of ∼ 6.5 given in [?] for masses of ∼ 20 kg.

The Space Py Quest model returns a strain noise amplitude of

hMT =
4

L

√
kbT

MeffQ
× w1√

w

(
(w2

1 − w2)2 +
(

w2
1

Q

)2
) . (12)

This incorporates our approximation of equation (28) from [?] for the first-mode fluctuations into the
relevant strain calculation given in equation (29).

• Suspension Thermal
In reality, the suspension wires contribute pendulum (horizontal) oscilliations, vertical oscillations, and
violin modes [?] to the thermal noise. As in equations (19), (22) and (24) in [?], each contribution has the
form

hST =
2

L

√
X2

ST, (13)

where XST are the thermal fluctuations in the suspension material and L is the detector’s arm length. We
initially make the simplifying assumption that all suspension stages are the same, and that the last stage
is the only one contributing to the thermal noise. We also assume that there are 4 suspension stages and
that the wires are made of steel, as in the Virgo design document [?]. Finally, the violin modes are not
included for simplification. Thus, the Space Py Quest calculation uses Young’s Modulus, E ≈ 2 × 1011

Pa, a breaking strength of Y ≈ 2 × 109 Pa, and a loss angle of φ ≈ 1 × 10−4. The suspension thermal
fluctuations are expressed as

X2
ST =

4kbT

ω5

g

4l2

√
gE

πM

φ

Y
, (14)

which can be substituted into equation 13 to return

hST =
2

lL
×
(
gE

πM

) 1
4

×
√
kbTgφ

ω5Y
, (15)

where l is the suspension length, T is the detector’s temperature, M is the mirror mass, and ω = 2πf as
before.

Residual Gas

The residual gas pressure influences the refraction index of the inner interferometer arms,

n = 1 + ε
Parm

P
, (16)

where ε ≈ 1.2 × 106−4 [?], and P is the atmospheric pressure in mbar. The Virgo design document gives the
strain due to radiation pressure fluctuation as

hRG =
επ

1
4

Natmos

√
wbeamNarm

vH2Vbeam
≈ 2.5× 10−26, (17)

where wbeam is the beam waist far from the mirror (∼ 0.1m), vH2 is the molecular velocity, Vbeam = πw2
beamLarm

is the ‘beam volume’, and Narm and Natmos are the molecular densities in the arm and in the atmosphere,
respectively. The arm pressure, Parm, is calculated in units of mbar as

Parm = Pe−8Np + 10e−4Np + 10−3e−2Np + 10−8−0.7Np + 10−11e−0.3Np + 10−16. (18)

7

Figure 5: The residual gas noise model is a limiting ‘floor’ to the noise model. It is
not frequency-dependent, so appears as a straight line across the graph.

This is an approximation of the sum of partial pressures of the main gasses contributing to the residual gas. The
final component of this calculation is the only part that is independent of the number of vacuum pumps, Np. It
is thus the minimum pressure that a user can reach. The equation used to calculate the strain due to residual
gas pressure fluctuations is then

hRG = 1.37× 10−18 ×
√
Parm

L
. (19)

Quantum Noise

Figure 6: The quantum limit in Space-Py Quest, formed by the combination of
radiation pressure noise and shot noise.

• Radiation Pressure
The radiation pressure noise calculation in Space Py Quest is an adaption of equation (12) in [?],

hRP =
16
√

2F
LM(2πf)2

√
hFPRP

4π2cλ

√√√√ 1

1 +
(

f
fFP

)2 . (20)

In this expression, F is the arm cavity finesse, FPR is the power recycling factor, c is the speed of light, λ
is the wavelength of the laser light, and fFP is the Fabry-Perot cut-off frequency, defined as

fFP =
c

4LF
. (21)

8

We multiply the result by the square root of the product of the mirror material damping rate L and
the mirror surface roughness loss LR,

√
LLR. The power scaling of these values is again arbitrary. The

radiation pressure noise is then

hRP =
F

LMπ3f2

√
8hFPRP

cλ

√√√√ 1

1 +
(

f
fFP

)2 ×
√
LLR. (22)

• Shot
Shot noise is given in equation (11) of [?] as

hSh =
1

8LF
×

√
2h

λc

ηFPRP
×

√
1 +

(
f

fFP

)2

. (23)

In Space Py Quest, we assume that a photodetector efficiency of η = 1. We also include the lossiness due
to the roughness of the surface, so that the noise calculation used is

hSh =
1

8LF
×
√

2h
λc

FPRP
×

√
1 +

(
f

fFP

)2

× L− 1
2L−5

R . (24)

The powers to which L and LR are raised are arbitrary.

2.2 Detector Score Calculations

Detector Range

In Space Py Quest, the detector range is the distance to which the detector can observe mergers of two given
masses, m1 and m2, based only on the inspiral section of their signal. During this stage of the coalescence,
the signal amplitude spectral density in the frequency domain has roughly the same gradient as the total noise
amplitude spectral density, and goes as f−7/3 [?]. The merge and ringdown sections of the signal, which occur
at higher frequencies, are not considered in this calculation. This has the effect of rendering the high-frequency
sensitivity of the Space Py Quest detector irrelevant to the detector range for heavier masses, whose inspiral
signal terminates at relatively low frequencies within the detector’s frequency band.

The net noise power spectrum, S, is the sum of the squares of all noises at each point in the detector’s sensitive
frequency band. The sensitivity integral is the integral of the signal-to-noise ratio,

IS(f) =

∫ fhi

flo

f−
7
3 df

S
, (25)

where flo and fhi denote the lower and upper limits of the frequency range, respectively. The Keplerian frequency
at the innermost circular orbit of a binary inspiral is

fisco =
1

61.5π(m1 +m2)M�,nu
, (26)

Where M�,nu = M�G
c3 is the Sun’s mass in natural units. At fisco, which point the gravitational wave inspiral

signal stops for lower masses, and transitions into the actual merge and then ringdown signals for more massive
binaries. This becomes the upper limit of the sensitivity line integral, IS(f).

The combined mass of the binary is defined by its chirp mass,

µ =
(m1m2)0.6

(m1 +m2)0.2
M�,nu. (27)

The detector distance is then calculated by

D =

√
IS(f)×M

2.26×Mpcnu
, (28)

9

where

M =
80µ

5
3

96π
4
3 τ2

snr

. (29)

and τsnr = 8 is the signal-to-noise ratio required for observation. Mpcnu = Mpc
c is Mpc in natural units. The

equation for D is used to find the ranges to which the detector can observe binary black hole mergers, rbhbh,
and binary neutron star mergers, rnsns. For the black holes, both masses are taken as 47 M�, whilst for neutron
stars, the masses are both 1.7 M�.

Detector Cost

The total cost, C, is the sum of parameter-dependent costs, Ci. Its dependence on the number of suspension
stages Ns, suspension length l, and mirror mass M is contained within the component that considers vibration,
Cvib. There is also a dependence on mirror mass in the calculation of the roughness cost, Cr, which is influenced
additionally by the mirror roughness R and the roughness losses LR. The laser power, P , and detector depth, d,
contribute costs Cpow and Cdepth respectively. The cooling cost, Ctemp, is dependent on the detector temperature
T , its initial ambient temperature T0, the temperate change, ∆T , per kilometer, and the temperature of nitrogen,
TN . These costs are calculated as given below.

Cdepth =

{
(d− 20)

1
3 × 75× 105 when (d− 20) > 0

0 otherwise
(30)

Ctemp =

{
AT,1 ×

(
T0 + d∆T

100 − T
)

when T > TN

7× 106 +AT,2 (77− T)
2

otherwise
(31)

(where arbitrary constants AT,1 and AT,2 are 20102 and 10201, respectively) (32)

CNp = Np × Cv (33)

Cr =
M

2
3 (R3 − L3

R)(8× 107)

25
(34)

Cmat = Cmat (35)

Cpow = 47× 103 + 25× 106 ×
(
P

Phi

)2

(36)

(where Phi is the upper power limit) (37)

Cvib = lav ×N bv
s ×M cv × 60− 60 (38)

(where av, bv and cv are 2.1, 5.5 and 1.2 in that (39)

order, and av and cv are arbitrary) (40)

Then
C =

∑
i

Ci, (41)

where i represents a parameter with a unique cost.

Numbers of Detections (and Missed Detections)

• Binary Neutron Star Mergers
The number of black hole binary merge signals detected is the rounded result of

Nnsns =
4π × 6000

3× 12

(
rnsns

1× 103

)3

, (42)

where rnsns is the range to which the detector can sense neutron star mergers with component masses of
1.7 M�.

10

• Binary Black Hole Mergers
The number of neutron star binary merge signals detected is the rounded result of

Nbhbh =
4π × 20

3× 12

(
rbhbh

1× 103

)3

, (43)

where rbhbh is the range to which the detector can sense black hole mergers with component masses of 47
M�.

• Supernovae
Detectors with good mid- to high-frequency sensitivity can obtain just one supernova detection. This was
done after the tests described in section 3 were performed. The supernova signal amplitude curve is found
using the total noise amplitude curve S,

ys =
√
S + (1× 10−23)2. (44)

The area under both the noise and the supernova curves is calculated by taking their integrals, In and Is
respectively. The result is then

Nsn =

1 if 25×
(
Is−In

4×10−20

)3

≥ 1

0 otherwise.
(45)

• Complexity
The ‘complexity’, Z, is a measure of how challenging it is to maintain the detector. If a detector requires
a lot of time to restore it to its design sensitivity when it breaks, then it spends less time observing, and
events can be missed as a result. The total complexity is the sum of complexities due to the detector’s
depth d, and temperature T , the number of vacuum pumps Np and suspension stages Ns, the laser power
P , and the mass M , material damping rate L, and roughness R of the mirrors. The complexities are:

Ztemp =

{
1− T−TN

T0+ d∆T
100 −TN

when T > TN

5 otherwise
(46)

Zr = 1 +
50−R

500
(47)

ZNp =
Np

10
(48)

ZNs =
Ns

2
(49)

Zpow =
P

10
(50)

Zmass =
M

50
(51)

Zmat = L (52)

Then
Z = Zdepth +

∑
i

Zi, (53)

where the complexity due to the detector’s depth, Zdepth, is a linear interpolation of approximated depth
and complexity data, and i represents a source of complexity.

• Missed Detections
The number of missed events depends on the complexity of the detector, Z, itself in relation to the com-
plexity credits of its site, Zcred. The overcomplexity, O, is

O =

{
Z − Zcred if Z − Zcred > 0

0 otherwise
. (54)

11

The complexity scale, SZ , is then

SZ = 1− O
Zcred

. (55)

The number of missed sources of a given type i is the rounded-down result of

Nmissed,i =

{
Ni × (1− SZ) if Ni × (1− SZ) > 0

0 otherwise.
(56)

3 Testing Space Py Quest

In order to ensure that Space Py Quest performs as expected, we completed a number of checks, including a
comparison to the original Space Time Quest game, and a comparison to the actual sensitivity curves for aLIGO.
We also checked tha the individual noise curves scaled as expected and that the maximum number of detections
for different sources match the desired behaviour.

3.1 Testing Validity of Individual Noise Curves

The noise curves displayed by the Space Py Quest plotting interface were individually tested to ensure that they
correspond accurately to their respective noise equations. This included examining the scaling of the curves with
relevant. The scalings are considered in terms of the conventional log-log plot for detector sensitivity curves, and
are outlined below. In addition, sensitivity values at arbitrary frequencies were evaluated, and can be seen in
table 1.

As Space Py Quest is in essence a simplified gravitational wave detector sensitivity modelling software, the scaling
of the noise curves can be compared to those produced by the more realistic Gravitational-Wave Interferometer
Noise Calculator (GWINC) [?]. Parameters that approximately matched up to the aLIGO detector were input
into Space Py Quest. These parameters were found using the aLIGO model used in GWINC, and consisted of
d = 0m, Np = 6, Ns = 4, l = 0.6m, M = 40kg, P = 125W, r = 1nm, T = 295K and mirror material of Silica.
The detector arm length, which is typically constant in the game, was set to 4000m to mirror aLIGO.

The aLIGO location is not an option is Space Py Quest, so the location that appeared to have the most similar
values for seismic and gravity gradient noise (Island) was selected. Noise curves produced with these parameters
and the aLIGO model in GWINC are shown in figure 7.

The quantum noise in GWINC includes both radiation pressure and shot noise, whereas the coating and substrate
noises are combined into mirror thermal noise in Space Py Quest. As an overview, it can clearly be seen that
total noise curves follows a similar shape, with minimum strain between 10−23Hz−1/2 and 10−24Hz−1/2. They
both appear to be mostly limited by shot noise and suspension thermal noise, with seismic noise dominating at
low frequencies. An obvious difference between the two is the greater number of spikes due to resonant modes
included in GWINC. This difference is assumed to be due to the simplified equations used in the game. The
scalings for individual noise curves are detailed below.

1. Residual Gas Noise

• Frequency: Residual gas noise is the only noise that does not depend on frequency, and therefore is
a horizontal line in the sensitivity plot at any parameter values. In the GWINC plot, however, this
noise decreases at higher frequency, suggesting that a more realistic implementation of residual gas
would have this effect.

• Number of pumps: The dependence on this parameter can be seen in equation 19. This equation
suggests that although the addition of pumps lowers noise, this effect should decrease as Np increases,
which can be seen by altering this variable in Space Py Quest. The number of pumps was set to six
to replicate the GWINC aLIGO model, but this appears to produce a higher value of noise. This is
attributed to the simplification of residual gas used in the game.

2. Mirror Thermal Noise

12

Xseis/f2

Xseis(1+(f/fp)4)-2

f-1/2

(f4+f6/fFP)-1/2

(1+(f/fFP)2)1/2

constant

f-5/2

(a) Noise curves produced by Space Py Quest for aLIGO model

100 101 102 103 104

Frequency [Hz]

10 25

10 24

10 23

10 22

10 21

St
ra

in
 [1

/
Hz

]

Quantum
Seismic
Gravity Gradient
Suspension Thermal
Coating Brownian

Coating Thermo-Optic
Substrate Brownian
Substrate Thermo-Elastic
Excess Gas
Total

(b) Realistic noise curves produced by GWINC for aLIGO model

Figure 7: Noise curves for aLIGO model produced by Space Py Quest and GWINC.
The maximum sensitivity for both appears to be around the same value, and both
curves are mostly limited by seismic, suspension thermal and quantum shot noise.

• Frequency: This noise curve declines over frequency in the game, which can be explained by the ω−1/2

dependence in equation 12. At higher frequencies, the resonance in the (ω2
1 − ω2)−1/2 term leads to a

spike at the resonant frequency of the mirror. This can be seen more clearly in figure 8. The coating
and substrate noises in GWINC are combined into the mirror thermal noise function, and it can be
seen that the dominant coating Brownian noise follows a similar scaling and value to those produced
by Space Py Quest, omitting the resonance. The resonance in the game is partially arbitrary.

• Mirror mass: The mass dependency in mirror thermal noise can be seen in the Meff and ω1 terms
in equation 12. The first term suggests that increasing mass increases noise. However, the mass
dependence in the second term means that as mass increases, noise increases, and appears to dominate.
It also describes the resonant frequencies of the mirror, which decreases as mirror mass increases. This

13

behaviour can be seen when varying the parameters in the game.

• Mirror material quality and temperature: The noise is proportional to
√
T , so as T increases the noise

should increase. However, the optical loss dependence on temperature (described in appendix A.1)
appears to dominate, meaning that after around 30K the noise curve decreases until approximately
250K, where it starts to increase in noise again.

3. Radiation Pressure Noise

• Frequency: This noise is proportional to (f4 + f6/fFP)−1/2 as shown in equation 22, and the effect of
the noise decreasing with frequency can be seen in Space Py Quest. In GWINC, radiation pressure is
the dominant quantum noise at low frequencies, which appears to follow a similar scaling.

• Power and mirror mass: It is also proportional to P 1/2 and M−1, and both responses can again be
seen when altering the respective parameters in the game.

• Mirror material loss: Radiation pressure noise depends on the mirror material damping factor as L1/2.
All material losses are identical except for Crystal, which is more lossy than the other materials and
therefore has a smaller value of L. This is depicted by a constant decrease in the radiation pressure
noise across all frequencies when Crystal is selected in the game. Swapping between the other materials
has no effect on this noise, as expected.

4. Seismic Noise

• Frequency, number of stages and location: The frequency dependence of seismic noise is encompassed
in the Tpend and Xseis terms in equation 6, and is also dependent on the number of stages and
location. Keeping the latter two constant, the (f/fp)2 value in Tpend term prevails at low frequency,
meaning that noise is initially constant and then decreases with frequency. When the left and right
hand sides of the Tpend denominator tend towards the same value, a resonance peak can be seen. At
greater frequencies, the (f/fp)4 term dominates, meaning that noise again decreases with frequency.
These frequencies dependencies are all multiplied by the 1 + (f/fc)

n0 in Xseis, which too becomes
less dominant at greater frequencies. All these effects can be seen in Space Py Quest, with the initial
decrease in frequency being affected by changing location, and the resonance becoming more peaked
at a greater number of stages. The number of stages is an exponent, so altering it should change the
gradient of the line, which appears to be the case in the game. The seismic resonance can be seen at
higher frequencies in GWINC, after which it follows a similar scaling to that in Space Py Quest.

• Suspension length: The suspension length dependency is similar to the frequency dependence in Tpend,
except with f → l1/2, which makes the distribution wider. Increasing the suspension length increases
noise at very low frequencies but decreases it at values of 1Hz and higher, when the Xseis(f/fp)4 term
is again dominant.

• Depth: The final parameter that affects seismic noise is depth. It is proportional to (1 + d
50

4
)−1/2,

meaning that above 50m, noise decreases with depth. Similar to suspension length, the effect is smaller
at larger depths. Below 50m, an increase in digging does not change the noise curve by a significant
amount. This was confirmed by the Space Py Quest interactive plot.

5. Shot Noise

• Frequency: The frequency dependence of this noise is (1 +
(

f
fFP

)2

)1/2, meaning that noise increases

with frequency. This can be seen in Space Py Quest, where the noise appears constant until the
frequency becomes the dominant term and the noise increases linearly with frequency. The shot noise
is the dominant quantum noise at higher frequencies in GWINC, and again follows a similar scaling
to the game.

• Roughness: The roughness dependence is (1 + (0.9/499)(1 − R))−5/2, meaning that as roughness
increases, shot noise increases, with greater effect at greater roughness.

• Power and mirror material loss: This noise is depends on power and mirror material damping factor
according to P−1/2 and L−1/2, meaning that an increase in either of these parameters decreases shot

14

noise.

6. Gravity Gradient

• Frequency: The frequency dependence of this noise is Xseis(f)/f2 , and can be seen as a line of
negative gradient in Space Py Quest. At higher frequencies, the 1/f2 becomes more dominant, and
this transition can be seen as a ‘knee’ in the game. In GWINC, the more realistic gravity gradient
noise leads to a different scaling at lower frequencies, until it transitions into a scaling that appears
similar to Space Py Quest.

• Location and depth: It is also dependent on location and depth, and this relation is identical to that
in seismic noise. Therefore, the same effect can be seen when altering these parameters.

7. Suspension Thermal

• Frequency: Suspension thermal has a frequency dependence f−5/2, which is a power law and therefore
is displayed as a straight line decreasing in value in Space Py Quest. Ignoring the realistic resonances
included by GWINC, this noise curve again appears to follow a similar scaling to the game.

• Mirror mass and suspension length: As the mass dependence is M−1/4, the noise decreases with
increasing mass, with the effect decreasing at greater mass. The noise also scales with suspension
length as l−1, which produces a similar effect to varying mass, but with a greater gradient.

• Temperature: The suspension thermal noise is proportional to
√
T , so increases with temperature.

Check for varying detector configuations for each noise curves can be seen in table 1. All parameters are set to
mirror the aLIGO model at the initiation of each check, and the original values were multiplied by the relevant
scaling factors to ensure that they returned identical results to the noise calculations and the interactive plot in
Space Py Quest.

Table 1: Point checks for individual noise curves. The new strain obtained when altering selected
parameters at varying frequencies is shown. The values obtained correspond to what can be seen in
the Space Py when setting these parameters, and also what is output by multiplication by the relevant
scaling factors, confirming how the plot and calculations are as expected.

Noise Frequency [Hz] aLIGO h [Hz−1/2] Altered Parameters New h [Hz−1/2]
Residual Gas Any 1.8× 10−24 Np → 16 1.0× 10−26

Mirror Thermal 100 3.3× 10−24 T → 80 K, 7.3× 10−23

M → 90 Kg
Radiation Pressure 1000 5.2× 10−27 P → 20 W, 6.5× 10−28

M → 80 Kg,
Material → Crystal

Seismic 5 1.0× 10−20 l→ 3 m, 2.5× 10−28

Ns → 5,
d→ 800 m

Shot 100 3.2× 10−24 R→ 100 nm, 1.5× 10−23

P → 40 W
Gravity Gradient 10 1.5× 10−24 d→ 500 m, 6.8× 10−25

Location→ City
Suspension Thermal 100 1.3× 10−24 M → 20 Kg, 1.1× 10−25

l→ 3 m,
T → 70 K

3.2 Comparison to Space Time Quest

The original version of Space Py Quest ported to Python (before the arbitrary scaling factors were added) was
compared to the released version of Space Time Quest. During this comparison, it was found that Space Time
Quest did not include the suspension thermal noise when calculating the total noise and therefore the maximum

15

detector range. Therefore, the suspension thermal noise was taken out of Space Py Quest when calculating the
score, for a full comparison.

It was found that detector depth behaved differently in the two versions, despite the code being identical. Both
games returned the same maximum number of detections, 281. The difference was very slight, meaning that with
all parameters set to optimal values, the depth would need to be over 12m to achieve 281 detections in the C#
version, whereas this was possible for any value from 0 to 20m in the Python version. This was concluded to be
due to different rounding errors present in the two implementations.

As mentioned in section 1.1, the different integration technique used for the distance calculation also lead to
slight discrepancies, but has considerably helped speed up the Markov chain Monte Carlo (MCMC) algorithms
used to find the high scores. The MCMC currently iterates over multiple chains for around 106 points to output
the high score, and each run takes around 30 minutes. Therefore, the original integration method would have
been unreasonably slow. Other than these two changes, no differences between the two versions of the same game
have been found, suggesting that Space Py Quest should work as expected.

3.3 Optimal Parameters

Another way of testing Space Py Quest is to check that the parameters achieving the maximum number of
detections are realistic using an optimisation method. The expected optimal parameters for maximising the total
number of source detections is compared to values output by the optimisation method, and are found to be as
expected. This means that parameters corresponding to high scores for this game are also as expected.

Due to the fact that multiple parameters can be varied in Space Py Quest, a Markov Chain Monte Carlo method
(specifically the Metropolis Hastings algorithm [?, ?]), was chosen. This algorithm is known for being efficient
in multidimensional space, especially in comparison to grid search methods. It is typically used to sample from
probability distributions; however, a variation of this method was implemented to obtain the high score. This in
turn would output the best detector design while allowing us to test the performance of Space Py Quest. The
scipy.optimise.differential evolution [?] function was also used to ensure that the algorithm returned accurate
results.

Markov Chain Monte Carlo

All parameters except detector location and mirror material were varied in the Markov Chain Monte Carlo
(MCMC). Location and mirror material are categorical variables and have no well-defined incrementation, mean-
ing that they cannot be varied in the MCMC. This is because a new value cannot be proposed depending on the
current value of these variables, meaning it cannot form a Markov chain. Therefore, these parameters were set
arbitrarily to Jungle and Silicon respectively, and the frequency range set was to the aLIGO frequency band of
(1-104) Hz. An outline of the implementation method can be seen in algorithm 1.

Algorithm 1 MCMC algorithm

Start at random number of detections NTotal(d,Np, T,Ns, l,M, P,R)
for i = 1 to number of iterations do

Propose new number of detections NTotal(d
′, N ′p, T

′, N ′s, l
′,M ′, P ′, R′)

α = NTotal(d
′, N ′p, T

′, N ′s, l
′,M ′, P ′, R′)/NTotal(d,Np, T,Ns, l,M, P,R)

if α ≥ u[0, 1] then
NTotal(d,Np, T,Ns, l,M, P,R) = NTotal(d

′, N ′p, T
′, N ′s, l

′,M ′, P ′, R′)
end if
Record NTotal(d,Np, T,Ns, l,M, P,R)

end for

The algorithm initialises with random variable values corresponding to a random number of total detections
NTotal, calculated using the equations in section 2. It then proposes a jump to a nearby point for all parameters
(the proposed values are indicated by the primes in algorithm 1). The proposal jump was chosen to be drawn
from a gaussian distribution centred on the previous point, meaning that although the jump width varies, the
proposed jump is most likely to be close to the current point. Subsequently, an acceptance ratio α is calculated,

16

using the proposed and current position. If this ratio is greater than or equal to a uniformly drawn random
number between 0 and 1, then the proposed step is accepted and the proposed number of detections becomes
the current number of detections. Otherwise, the proposed step is rejected, and the chain remains where it is.

The use of the acceptance ratio means that the chain will always accept a move towards a higher number of
detections, but also occasionally towards a lower number, depending on the ratio of the number of detections at
the respective positions. This allows the search to move away from local maxima and ensures it finds the global
maximum. At the end of each iteration, the current number of detections and corresponding parameters are
recorded.

Finding the Maximum Number of Detections

As a simple test, the budget and complexity in the game were ignored, which meant that the effect of the
parameters on the noise curves could be considered without being limited by their cost or complexity. According
to the noise equations used, minimising noise should correspond to maximising mirror mass, number of stages
and pumps, depth of the detector and suspension length, as well as minimising temperature and roughness of the
mirrors. Increasing power increases radiation pressure noise but decreases shot noise, meaning a compromised
value between the two limits is expected to be optimal.

Both optimisation methods output a maximum of 393 detections. The MCMC was ran for approximately 1×106

points, outputting 85 different combinations of parameters. This maximum could only be found when mirror
mass was at its higher limit of 100kg, and roughness at its lower limit of 1nm. The optimal number of pumps
ranged from 9km−1 upwards, and the number of stages from 4 upwards. The suspension length too varied in the
higher end of its limit, from approximately 4km upwards, and the depth ranged from around 600m to 700m. This
was expected, as a high value for all these parameters decreases noise in the game. The range of these optimal
values can be explained by the fact that at peak sensitivity for total detections, the detector in the game is limited
by radiation pressure and shot noise (see figure 8). These noises have the same quantum origin, and cannot be
decreased simultaneously due to Heisenberg’s uncertainty principle. This limit is called the Standard Quantum
Limit [?]. The algorithm finds the optimal value for power varies between 35W and 45W, and cannot reduce
both noise curves any further. It was discovered that at these parameters, the optimal value could be found at
a large range of depths, from about 50m onwards. As the seismic and gravity gradient noises are well below the
limiting curves, digging beyond 50m does not improve the overall detector sensitivity. The same reasoning can
be used to explain why not all parameters are at their extreme limits for minimising individual noise curves.

Figure 8: One combination of parameters that return maximum sensitivity without budget or com-
plexity limits. The quantum noise curves limit detector sensitivity, meaning that parameters not
included in these noises can vary over a wide range without changing the overall detector sensitivity.

An optimisation including the budget and complexity was also implemented, returning 203 detections. As
expected, this was found at a combination compromising truly optimal values, due to the added limits. The true
parameters achieving this high score will not be revealed in this document.

17

3.4 Effects of Mirror Material and Location Choices

As location and mirror material were not varied in the MCMC, the effects of these variables were tested inde-
pendently.

Mirror material: Silicon, Silica and Sapphire have the same values of mechanical damping factor, L, but are
distinguished by differing optical losses. This is outlined in appendix A.1. Lower optical loss means greater
mirror quality factor Q, leading to lower mirror thermal noise. This increases the sensitivity of the detector,
leading to a greater detector range and number of detections.

According to this logic, Silicon should return the greatest detector range, followed by Sapphire and then Silica.
Crystal appears to have the greatest optical loss, which leads to significantly greater mirror thermal noise as
shown in figure 10. It also has a lower value of L, which increases shot noise and reduces radiation pressure noise
slightly, as well as reducing complexity. Consequently, selecting this material should lead to the lowest detector
range and therefore number of detections. This was tested by setting the parameters to those for the aLIGO
model (including Island for location), and varying the mirror materials. The results are detailed in table 2,
confirming what is expected.

Table 2: Results obtained for different material choices with the aLIGO model. Silicon produces the
greatest detector range, followed by Sapphire and Silica. Crystal clearly leads to the worst overall
detector sensitivity, outputting no detections.

Material: Sapphire Crystal Silicon Silica
Nbhbh 2 0 2 2
Nnsns 6 0 6 5
Nsn 1 0 1 1

rbhbh (Mpc) 653.07 58.57 657.35 644.92
rnsns (Mpc) 138.54 4.95 142.74 131.37

Score (Mpc) 153.16 7.67 157.15 146.35
Total Cost ($) 68879252 57939252 63999252 61979252

Total Complexity 18.02 17.42 18.02 18.02

Location: The values correspond to location are detailed in appendix A.1. Desert has the least mechanical
susceptibility scaling Xdc and high frequency floor Xhf , as well as the greatest exponent to the frequency-
dependent scaling n0. It is based on a mixed spectrum of globally seismic sites. According to equation 1, this
location should result in the lowest values of seismic and gravity gradient noise. By contrast, City has high values
of Xdc and Xhf , as well as the lowest value of n0, meaning that it should output the maximum seismic and
gravity gradient noise and therefore smallest detector range. Island and Jungle fall in the middle of these two
location in terms of minimising noise. Island has a lower value of Xdc and higher n0 than Jungle, but also a
greater Xhf . This makes it difficult to deduce which of the two would result in a greater detector range.

Again setting the initial values to the aLIGO model (including Silica for mirror mass), the location was varied,
and the results can be seen in table 3. The results for Island are the same as for Silica above as the parameter
combinations are identical, but it is repeated for completeness. As expected, Desert and City return the greatest
and smallest detector range respectively. The detector ranges for Jungle and Island fall in the middle as predicted,
with Jungle appearing to be a slightly better option as it gives a greater detector range. The total number of
detections does not vary as the ground motion noises are predominant at low frequencies and does not have a
large effect with the selected source masses. A comparison between the Desert and City locations can be seen
in figure 10b. Setting the City location increases seismic and gravity gradient noises, leading to a lower detector
sensitivity.

The complexity of the materials and the costs for both match up to the values selected for the game outlined in
the appendices (the complexity does not change with location, it remains constant at 18.02).

3.5 Frequency Band Sensitivity

Gravitational wave detectors can be optimised for different frequency bands to detect selected sources. Currently,
detector sensitivity is greatest in the range of (10-103)Hz. Compact binary inspirals release gravitational waves

18

(a) Silicon

(b) Crystal

Figure 9: Comparison between effects of Silicon and Crystal mirror materials on the
detector sensitivity. The selection of Crystal greatly increases mirror thermal noise,
in turn decreasing the sensitivity of the detector across a large range of frequencies.
It also slightly reduces radiation pressure noise and increases shot noise.

19

Table 3: Results obtained for different location choices. As change in location only has an effect at
low frequencies, the total number of detections remains the same at all locations. However, the Desert
location maximises the range of the detector, followed by Jungle then Island. The high ground motion
noise with City means it has the smallest detector range.

Site: City Jungle Desert Island
Nbhbh 2 2 2 2
Nnsns 5 5 5 5
Nsn 1 1 1 1

rbhbh (Mpc) 643.51 645.03 645.16 644.92
rnsns (Mpc) 131.34 131.37 131.38 131.37

Score (Mpc) 146.26 146.36 146.36 146.35
Remaining Budget ($) 33020748 63020748 23020748 43020748

(a) Desert

(b) City

Figure 10: Comparison between effects of Desert and City locations on the detector
sensitivity. Selecting City leads to an increase in both seismic and gravity gradient
noise. However, the effect on the total noise curve is over a small range at a low
frequency, meaning that the overall detector range and sensitivity does not alter
significantly

in the form of sinusoids, increasing in frequency and amplitude until the end of the inspiral phase. They spend
a variable amount of time in different frequency bands. A neutron star binary inspiral, with each neutron star
assumed to be a mass of 1.4M�, will have a maximum gravitational wave frequency of 1500Hz [?]. Inspirals of

20

higher mass terminate at proportionally lower frequencies. As neutron stars are less massive than black holes,
setting parameters to achieve greater sensitivity at a high frequency band should return more detections of
neutron stars. This property was checked for Space Py Quest as described below.

Again setting the parameters to mirror the aLIGO model, the power was increased to 200W. This decreased shot
noise, which dominates at higher frequencies, and returned detections of five neutron star binaries, one black
hole binary and one supernova.

The parameters were then varied to favour greater sensitivity at a lower frequency. This involved moving the
power down to 7W to increase shot noise and reduce radiation pressure, changing location to Desert to reduce
seismic and gravity gradient noise, and increasing suspension length and mirror mass to their maximum values,
mostly to reduce radiation pressure and suspension thermal noises. The resulting noise curves can be seen in
figure 11. This output three neutron star binaries, 32 black hole binary and zero supernova detections. As one
supernova detection has been included for a good mid-high frequency range sensitivity, Space Py performs as
expected in different frequency bands.

(a) Optimising for high frequency range

(b) Optimising for low frequency range

Figure 11: Sensitivity curves obtained when optimising for different frequency ranges.
Optimising for higher frequencies means that high frequency sources like neutron
stars and supernovae are more likely to be detected. Black holes signals terminate
at lower frequencies, making them more likely to be found when optimising for low
frequency.

21

3.6 Conclusions of Testing

The primary checks carried out on Space Py Quest all appear to indicate that it behaves as intended. The
discrepancies found between the original Space Py Quest have been investigated and documented, and the
output noise curves scale with the relevant parameters as expected. The parameters outputting the maximum
sensitivity for total number of detections is also as expected from the noise equations used in the game. Finally,
it detects more neutron star binaries for a greater sensitivity at high frequency, and more black hole binaries for
a greater sensitivity at a lower frequency, as it should.

22

4 Making Space Py Quest

4.1 Code Structure

Figure 12: Code structure diagram for Space Py Quest. Utility functions and
constants, defined in the appendices of this document, are held in utils.py and
constants.py respectively. These are used throughout the rest of the game code.
All other .py files displayed define the game classes. The Detector class is defined
in detector.py. This imports sites.py and materials.py so that it can initialise its
own location and mirror material parameters if the user does not provide them. The
game interface is managed by the spaceTimeQuest class, which both handles the
interaction of the iPython widgets with the Bokeh.io plot, and the interaction of the
Score class with the detector object. Score and ScoreCalculator are defined in
score.py, which calculate the figures of merit for the detector they are passed. They
utilise all of the noise classes defined in noise.py to generate and return the detector’s
noise curves, cost, complexity, range, and the number of detections of different types
of event.

23

Figure 13: Illustration of some available widget types and the interactive output, both
existing within the Jupyter Notebook interface. The categorical variables of location
and mirror material are changed using toggle buttons. Continuous variables, like
suspension length and mirror surface roughness, are altered using float-type slides.
Discrete variables like the number of suspension stages are incremented using similar,
integer-type sliders. The ranges displayed on both axes are varied using float-type
range sliders. There are also tick boxes - not illustrated - which allow the user to
determine which noise curves are displayed. The score calculation and display is
triggered by a press of the Run button, which represents the detector activating a
‘Science run’.

24

Space Py Quest is written in Python. The driving code has a semi-object-oriented structure, as illustrated and
described in figure 12. The interactive elements of the game, existing in the Jupyter Notebook, are enabled using
iPython Widgets, with a Bokeh.io plotting mechanism. iPython Widget examples are shown and described in
figure 13. In addition to these, there are also Tick Boxes that determine which noise curves are shown. Each
widget responds to user interaction, triggering recalculation of the noise curves and updating the displayed plot
accordingly. The fraction spent of the user’s budget is also continuously updated as the detector parameters
change.

Suggestions for Structure Modifications
As shown in figure 12, the materials and sites classes must be imported by both detector and widget. This
is because widget must know about these classes in order to set detector values, and detector must know about
them in order to initialise itself with values, if none are provided by the user. Space Py Quest was designed to
be adaptable to detectors that might have different sites or materials, but this is not necessarily a useful feature.
It is proposed that instead, all parameter ranges and class names are stored in constants, and passed through
detector to widget. Alternatively they could be passed straight to widget, without the option for the detector
to initialise its own values.

5 Discussions and Outlook

5.1 Ideas for the Future

Space Py Quest was built in a limited time frame and is a work in progress. Some thoughts on possible steps
forward are detailed below.

1. Narrative
It is realistic that detector designs be swiftly modified and the results of these modifications considered. It is
somewhat realistic that a detector could be modified after one observing run in order to make improvements.
However, it is not realistic that the whole kilometer-scale detector could be picked up and moved to a
different location. In order to make Space Py Quest’s narrative and aims more similar to those of Space
Time Quest, future versions of the game could limit users to 5 or so ‘upgrades’. Additionally, putting the
location specification widget in a preceding Jupyter notebook container would add some semblance of a
one-way narrative.

2. Themed Parameters
During the ‘design phase’ of Space Time Quest, the user can switch between 3 sets of parameters, each with
a certain theme or ‘subsystem’: Environment, Vibration Isolation and Optics. Space Py Quest currently
has just one drop-down menu from which all of the parameters can be accessed. This was done to test
user addition of additional variables. It was also extremely easy to do using the dictionary of detector
parameters. The parameters could instead be held in themed tabs to segregate them into subsystems,
making the interface more similar to Space Time Quest.

3. Leaderboard or Prize
There is not the same motivation for a user to obtain the largest range in Space Py Quest as there is
in Space Time Quest. There is only scientific curiosity, which is perhaps more well-satisfied in Space Py
Quest, as the result of the science run is more informative about specific sources. To be used a teaching
tool for younger students, there could perhaps be a more accessible motivation, like a leaderboard or a
printable certificate.

4. Showcasing Resonance
Including slightly more accurate noise equations for things like mirror thermal noise would enable the
curves to spike at resonant frequencies. The origins of these spikes may be too advanced for certain levels
of education, but could be something to investigate when used as a teaching tool, as it has a visual effect
on the noise curves that may be peculiar to someone unfamiliar with the underlying physics.

5. User Definition of New Noise
In the package containing Space Py Quest is a file named translate.py. The functions in this file create a
key to define new noise functions in terms of detector variables, generate new noise classes in a separate

25

Figure 14: Frequency domain signals for detections GW150914 (blue), LVT151012
(green) and GW151226 (orange). These exact signals are nontrivial to recreate,
but can be approximated fairly simply by splitting into 3 sections with different
gradients. [?]

script, and import these new classes so that they can be passed to the score calculator. The new noise
curves are then added to the existing noise plot, with an embedded, user-defined tag to denote their nature.
This does not make up part of the game yet, but could be investigated by users, or included at a later date.

6. Detector Distance Calculation
The detector distance calculation considers the inspiral section of binary merger signals only. This means
that the high-frequency sensitivity of the detector is actually irrelevant to the range reported, which is not
physically realistic, and could end up teaching users incorrect physics. The shape of the frequency-domain
signal could be approximated for a game like Space Py Quest very simply.

Frequency domain signals from the first 3 detections made by the LIGO collaboration are shown in fig-
ure 14. Phenomenological models, such as IMRPhenomB, generate very nearly accurate frequency domain
gravitational waveforms. Doing this within Space Py Quest would be considerably more complex than
required to provide a relatively realistic estimate of a detector range calculation.

The IMRPhenomB model proposed by Ajith et al. [?] uses three transitional frequencies to indicate at
which stage in the merge a point within the binary signal has been emitted. Each make use of a conversion
factor,

conv =
GM�
c2

. (57)

The first, fmerge, describes the point at which the inspiral stage becomes the actual coalescence. The signal
gradient up until this point is well-approximated within Space Py Quest. This can be simplified for the
game from its value in Ajith:

fmerge = (1− 4.455 + 3.521)× conv ≈ 0.07× conv. (58)

The coalescence moves from the merge to the ringdown stage at a frequency

fring =
1− 0.63

2
× conv ≈ 0.19× conv, (59)

26

and the cutoff frequency can be given by

fcutoff = 0.3236× conv ≈ 0.32× conv. (60)

Using these transition frequencies, a very simple inspiral waveform can be constructed using the shallow
inspiral slope already calculated in Space Py Quest until fmerge, a horizontal line at this amplitude from
fmerge to fring, and then a steeper slope from fring to fcutoff .

5.2 A Personal Note

It may interest a reader to know that Space Py Quest was originally built as a training exercise towards the
creation of a software package for performing full, non-simplified noise calculation for ground-based gravitational
wave interferometers, called MAGIC. To this end, the making and testing of Space Py Quest has been an
invaluable learning curve. We have discovered the benefits of using Python’s dictionary type to make dynamic,
quickly-modified models whose parameters are portable and easily inserted into testing methods. This has directly
translated into the setup of our detector classes in MAGIC. Python’s capacity for list comprehension has also
significantly influenced our approach to our new noise calculation software, which we intend to be as efficiently
written as possible. Space Py Quest is essentially a toy model of MAGIC, and the lessons learnt in constructing
and using the game have both consciously and unconsciously weighted the procedures with which we construct
and test the latter.

A Appendix

Any symbols used within equations in this document that have a fixed value throughout the game are given in
this section, in addition to any other functions that have not yet been noted.

A.1 Functions, Constants and Parameters

Utility Function

There is only one utility function, which returns the result of a linear interpolation between points y(x) at point
x = t. If t falls between points xi and xi+1, then the returned value is

I(x, y, t) = y(t) =
yi(xi+1 − t) + yi+1(t− xi)

xi+1 − xi
. (61)

Global Constants

Name Symbol Value
Speed of light c 299792458 ms−1

Newton’s gravitational constant G 6.67408× 10−11

Gravitational acceleration at Earth g 9.81 ms−2

Mass of the Sun M� 1.99× 1030 kg
Planck’s constant h 6.626068× 10−34 kgm2s−1

Boltzmann constant kb 1.380650× 10−23 JK−1

Atmospheric pressure P 1013 mbar
Temperature of Nitrogen TN 77 K

Radius of the Earth RE 6400 km
Astronomical unit au 149598000 km

Megaparsec Mpc 3.08568025× 1022 km

Detector Constants

Detector parameters that cannot be altered through the Jupyter notebook interface are provided below, with
examples are given from Virgo and/or aLIGO [?, ?].

27

Name Symbol Value Note
Detector arm length L 5000 m Virgo arm length: 3000 m

aLIGO arm length: 3994.5 m
Detector finesse F 60 Virgo finesse: 50

aLIGO finesse : 450
Laser wavelength λ 1064× 10−9 Virgo laser wavelength: 1064×10−9 m

aLIGO laser wavelength: 1064× 10−9 m
Detector power recycling factor FPR 100 Virgo power recycling factor: 50

aLIGO power recycling factor: 43.61
First mirror resonance fR 4000 Hz Virgo first mirror resonance: ≈ 5600 Hz

Cost of each vacuum pump Cv $850000
Initial ambient temperature T0 300 K Virgo ambient temperature: 300 K

aLIGO ambient temperature: 290 K
Temperature increase per kilometer ∆T 30 K

Depth array d [0, 10, 100, 500] m
Complexity array Zd [0, 1, 4, 6]

Ranges

User-modifiable variables must be restricted to within physically realistic limits. Those enforced by Space Py
Quest are given in the table below. Some information is provided to justify the choice of range [?, ?].

Name Symbol Range Note
Frequency range f [10−4, 105] Hz aLIGO and Virgo frequency ranges:

∼ 100 − 104 Hz
Detector burial depth d [0, 1000] m Both Virgo and aLIGO are above ground,

but future detectors like the Einstein
Telescope (ET) could be buried
100 - 200 m underground [?].

Number of vacuum pumps Np [0, 16] The number of vacuum pumps influences
the pressure in the interferometer arms,

as calculated using equation 18.
Detector temperature T [1, 330] K Virgo suspension temperature: 300 K

aLIGO suspension temperature: 300 K
Number of suspension stages Ns [1, 9] Both Virgo and aLIGO have 4 suspension stages.

Suspension length l [0.35, 5] m Virgo suspension length: 0.7 m
aLIGO suspension length: ∼ 0.5 m

Mirror mass M [5, 100] kg Virgo mirror mass: ∼ 20.4 kg
aLIGO mirror mass: ∼ 40 kg

Laser power P [1, 200] W aLIGO laser power: 125 W
Mirror surface roughness R [1, 500] nm aLIGO mirror surface quality: ∼ 0.1 nm

Site-dependent Values

The detector site influences the seismic noise curve, budget and complexity. The seismic noise is an approximation
of the noise curves shown in figure 7 of Ohashi et al. [?], which is reproduced in figure 15 in this document. City,
Island and Jungle come close to the curves for Tokyo, Kamioka and the Black Forest in order, whilst Desert is a
mixed spectrum of global seismically quiet sites. Each site class defines 6 identically-named data members. The
data members include Complex Credits, a scaling parameter for complexity, and Budget, the amount of money
available to the player.

28

Figure 15: Seismic noise curves for Kamioka, TAMA300 site, Tokyo, Black Forest
Geophysical Observatory in Germany, and a hybrid low noise model build from data
from global quiet sites, as plotted by Ohashi et al. [?].

Name Symbol City Jungle Desert Island
Complex Credits Zcred 20 19 17 18

Budget - 95× 106 125× 106 85× 106 105× 106

Mechanical susceptibility scaling Xdc 3× 10−5 5× 10−5 1× 10−7 8× 10−6

High-frequency floor Xhf 1× 10−11 5× 10−14 8× 10−15 9× 10−13

Critical frequency fc 0.15 0.02 0.125 0.08
Exponent of frequency-dependent noise scaling n0 2.3 2.4 2.6 2.5

Material-dependent Values

Each material has a damping rate, L. Materials with higher L contribute less to the mirror thermal noise. It
should be relatively simple for a user to infer that Crystal is not a good mirror material to choose.

Name Symbol Sapphire Crystal Silicon Silica
Goodness of losses L 1 0.4 1 1

Material base cost ($) C0 4× 106 5× 105 2× 106 1.5× 106

Cost mass scaling ($) A0 56× 106 9.5× 106 38× 106 28.5× 106

Temperature data (K) T [1, 25, 80, [1, 300] [1, 32, [1, 35, 90, 150,
105, 230, 300] 40, 270, 300] 200, 250, 300]

Losses data q(T) [1.4e-9, 2.5e-8, 7e-9, [1e-3, 1e-3] [1.4e-9, 1.5e-8, [1e-3, 7e-4, 1e-4, 3e-6,
1.2e-8, 1.6e-8, 1e-7] 7.5e-9, 4.5e-8, 7e-8] 3e-7, 1.5e-7, 1.5e-7]

The total mirror material cost is then

Cmat = C0 +A0

(
M

100

)2

. (62)

A.2 Making Space Pie

Space Pie Quest, or PieGO, is an interferometer made of pie. Specifically, apple strudel pie. It’s made with
ALDI ingredients, so it’s cheap, and it’s also vegan, and delicious. Thus, we maximise taste whilst minimising

29

Figure 16: The finished product, PieGO.

harmful consequences to the planet and our pockets.

Translation from non-vegan recipe

This pie is based on a recipe found here:
http://allrecipes.co.uk/recipe/16001/quick-apple-strudel.aspx. This uses an egg for glazing, which
we replace with soy milk.

Pie Structure

First make your pie. Follow the instructions in the link given, and ensure that you make 2 long rectangular pies
and 1 square one. At the assembly stage, wait until pies have cooled until configuring into a big ‘L’ shape with
the square at the vertex. Congratulations; you have an interferometer-shaped pie. Dust this with icing sugar
and serve.

Implementation

Eat, or enter (and win) a competition for ‘best physics-themed bake’.

30

http://allrecipes.co.uk/recipe/16001/quick-apple-strudel.aspx

	1 Introduction
	1.1 Space Time Quest and Space Py Quest

	2 Physics and Math Behind the Game
	2.1 Noise Curves
	2.2 Detector Score Calculations

	3 Testing Space Py Quest
	3.1 Testing Validity of Individual Noise Curves
	3.2 Comparison to Space Time Quest
	3.3 Optimal Parameters
	3.4 Effects of Mirror Material and Location Choices
	3.5 Frequency Band Sensitivity
	3.6 Conclusions of Testing

	4 Making Space Py Quest
	4.1 Code Structure

	5 Discussions and Outlook
	5.1 Ideas for the Future
	5.2 A Personal Note

	A Appendix
	A.1 Functions, Constants and Parameters
	A.2 Making Space Pie

